PENERAPAN CONVOLUTIONAL NEURAL NETWORK UNTUK IDENTIFIKASI PENYAKIT PADA TANAMAN PADI DARI CITRA DAUN MENGGUNAKAN MODEL RESNET-101

Muhammad Sidiq Pramono, Aditya Permana Wibowo

Abstract


  AbstrakPenyakit pada tanaman padi merupakan salah satu faktor utama yang dapat menurunkan produktivitas dan kualitas hasil panen. Jika tidak ditangani dengan tepat, hal ini dapat menyebabkan kerugian ekonomi bagi para petani. Deteksi dini penyakit padi sangat penting, namun identifikasi manual oleh para ahli seringkali memakan waktu dan rentan terhadap kesalahan manusia. Untuk mengatasi masalah ini, penelitian ini mengusulkan penerapan Convolutional Neural Network (CNN) dengan arsitektur ResNet-101 untuk mengklasifikasikan penyakit pada tanaman padi berdasarkan citra daun secara otomatis. Langkah-langkah yang dilakukan meliputi pengumpulan data citra daun padi, preprocessing data, pembagian dataset, pelatihan model CNN, evaluasi model, serta implementasi model ke dalam sistem berbasis web. Hasil penelitian yang dilakukan menunjukkan bahwa model CNN ResNet-101 yang dibangun mampu mencapai akurasi 76.05% dalam mengklasifikasikan 4 kondisi daun padi (sehat, bercak coklat, blast daun, hispa) pada data validasi. Sistem ini diharapkan dapat membantu petani dalam mendeteksi penyakit tanaman padi secara dini dan akurat, sehingga tindakan pencegahan dan penanganan dapat dilakukan dengan tepat waktu.Kata Kunci: Penyakit tanaman padi, Convolutional Neural Network, ResNet-101, Klasifikasi citra, Deteksi Dini.AbstractRice plant diseases are one of the main factors that can reduce productivity and harvest quality. If not handled properly, this can cause economic losses for farmers. Early detection of rice diseases is crucial, however manual identification by experts is often time-consuming and prone to human error. To address this issue, this research proposes the implementation of Convolutional Neural Network (CNN) with ResNet-101 architecture to automatically classify rice plant diseases based on leaf images. The steps involved include collecting rice leaf image data, data preprocessing, dataset splitting, CNN model training, model evaluation, and model implementation into a web-based system. The research results show that the developed CNN ResNet-101 model achieved 76.05% accuracy in classifying 4 rice leaf conditions (healthy, brown spot, leaf blast, hispa) on validation data. This system is expected to help farmers detect rice plant diseases early and accurately, so that preventive measures and treatments can be carried out in a timely manner.Keywords: Rice plant diseases, Convolutional Neural Network, ResNet-101, Image classification, Early Detection. 

Full Text:

PDF

References


Albawi, S., Mohammed, T. A., & Al-Zawi, S. (2017). Understanding of a convolutional neural network. 2017 International Conference on Engineering and Technology (ICET), 1–6. https://doi.org/10.1109/ICEngTechnol.2017.8308186

Borhani, Y., Khoramdel, J., & Najafi, E. (2022). A deep learning based approach for automated plant disease classification using vision transformer. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-15163-0

Cipta Sigitta Hariyono, R., Mega Saraswati, N., Noor Prasetyono, R., Zidan Alfariki, M., Peradaban Program Studi Informatika Fakultas Sains dan Teknologi Jln Raya Pagojengan Km, U., & Brebes, P. (2023). Rito Cipta Sigitta H, Deteksi Penyakit Bercak Coklat, Coklat Sempit Dan Hawar Melalui Spektrum Warna Citra Digital… DETEKSI PENYAKIT BERCAK COKLAT, COKLAT SEMPIT DAN HAWAR MELALUI SPEKTRUM WARNA CITRA DIGITAL DAUN PADI MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK. In ZONAsi: Jurnal Sistem Informasi (Vol. 5, Issue 2).

Erkamim, M., Prihatin, T., Saraswati, S. D., & Tonggiroh, M. (2024). Optimalisasi Throughput Pada Penerapan Load Balancing Dalam Jaringan Cloud Menggunakan Round Robin dan Least Connection. In Journal of System and Computer Engineering (JSCE) ISSN (Vol. 5, Issue 1).

Galih Wasis Wicaksono, & Andreawan. (2023). ResNet101 Model Performance Enhancement in Classifying Rice Diseases with Leaf Images. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 7(2), 345–352. https://doi.org/10.29207/resti.v7i2.4575

Hairani, H., & Widiyaningtyas, T. (2024). Augmented Rice Plant Disease Detection with Convolutional Neural Networks. INTENSIF: Jurnal Ilmiah Penelitian Dan Penerapan Teknologi Sistem Informasi, 8(1), 27–39. https://doi.org/10.29407/intensif.v8i1.21168

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770–778. https://doi.org/10.1109/CVPR.2016.90

Khalid, M. M., & Karan, O. (2023). Deep Learning for Plant Disease Detection. International Journal of Mathematics, Statistics, and Computer Science, 2, 75–84. https://doi.org/10.59543/ijmscs.v2i.8343

Kuswidiyanto, L. W., Noh, H.-H., & Han, X. (2022). Plant Disease Diagnosis Using Deep Learning Based on Aerial Hyperspectral Images: A Review. Remote Sensing, 14(23), 6031. https://doi.org/10.3390/rs14236031

Niswati, Z., Hardatin, R., Muslimah, M. N., & Hasanah, S. N. (2021). Perbandingan Arsitektur ResNet50 dan ResNet101 dalam Klasifikasi Kanker Serviks pada Citra Pap Smear. Faktor Exacta, 14(3), 160. https://doi.org/10.30998/faktorexacta.v14i3.10010

Ridhovan, A., & Suharso, A. (2022). PENERAPAN METODE RESIDUAL NETWORK (RESNET) DALAM KLASIFIKASI PENYAKIT PADA DAUN GANDUM. JIPI (Jurnal Ilmiah Penelitian Dan Pembelajaran Informatika), 7(1), 58–65. https://doi.org/10.29100/jipi.v7i1.2410

Salimah, N. A., Tutik Kuswinanti, & Andi Nasruddin. (2021). Eksplorasi dan Penentuan Ras Penyebab Penyakit Blas Padi di Kabupaten Maros. Jurnal Fitopatologi Indonesia, 17(2), 41–48. https://doi.org/10.14692/jfi.17.2.41-48

Sarwinda, D., Paradisa, R. H., Bustamam, A., & Anggia, P. (2021). Deep Learning in Image Classification using Residual Network (ResNet) Variants for Detection of Colorectal Cancer. Procedia Computer Science, 179, 423–431. https://doi.org/10.1016/j.procs.2021.01.025.

Sharma, A., Aswal, U. S., Rana, A., Vani, V. D., Sankhyan, A., & Shekhar. (2023). Real Time Plant Disease Detection Model using Deep Learning. 2023 6th International Conference on Contemporary Computing and Informatics (IC3I), 2695–2699. https://doi.org/10.1109/IC3I59117.2023.10398070.

Torrey, L., & Shavlik, J. (2010). Transfer Learning. In Handbook of Research on Machine Learning Applications and Trends (pp. 242–264). IGI Global. https://doi.org/10.4018/978-1-60566-766-9.ch011




DOI: https://doi.org/10.46576/djtechno.v5i3.5098

Article Metrics

Abstract view : 97 times
PDF – 39 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Muhammad Sidiq Pramono

DJTECHNO: Jurnal Teknologi Informasi Indexed By


MEMBER OF


Dedicated to :

Djtechno: Jurnal Teknologi Informasi published by :

PROGRAM STUDI TEKNOLOGI INFORMASI UNIVERSITAS DHARMAWANGSA

Alamat : Jl. K. L. Yos Sudarso No. 224 Medan
Kontak : Tel. 061 6635682 - 6613783  Fax. 061 6615190
Surat Elektronik : s1.ti@dharmawangsa.ac.id

Djtechno: Jurnal Teknologi Informasi

Ciptaan disebarluaskan di bawah Creative Commons Attribution-ShareAlike 4.0 International License