ANALISIS REGRESI LOGISTIK DENGAN SELEKSI FITUR DAN VALIDASI SILANG DALAM MENENTUKAN MODEL PREDIKSI STATUS GIZI ANAK
Abstract
The impact of the economic crisis after the COVID-19 pandemic and the Russia-Ukraine conflict has affected Indonesia's food stability, including the nutritional intake of school children. To respond to this, this study developed a multivariate logistic regression-based predictive model to identify children's nutritional status (normal, malnourished or obese) based on questionnaire data of parents with children aged 6-15 years. The variables analyzed included eating patterns, physical activity, snacking habits, and consumption of fast food and sweet drinks. The results of the Pearson correlation analysis showed that children with a balanced diet (rich in vegetables, fruits, and protein) tend to have normal nutritional status, while the consumption of fast food andsugary drinks is negatively correlated with nutritional health. Breakfast and physical activity were also shown to have a positive effect. However, the prediction model built has limited accuracy with high specificity for normal cases at 0.92, but low sensitivity at 0.38 in detecting poor nutrition/obesity. This means that the model is not yet reliable enough for critical medical applications, but it remains useful as an initial scoring tool. These findings leadto three practical recommendations: (1) an early detection system for nutrition problems based onsimple scores, (2) personalized nutrition interventions (such as reducing fastfood and increasing physical activity), and (3) refining the Free Nutritious Meal program so that it is well-targeted. Although still in the proof of concept stage (TKT 3), this research provides a scientific foundation for data-driven nutrition policy at the primary healthcare level, especially in the midst of global economic challenges that affect family food security. With this approach, efforts to prevent malnutrition in school children are expected to be more targeted, efficient and adaptive to changing socio-economic dynamics.
Full Text:
PDFReferences
Rahayu, S., dan Widodo, T, “Pengaruh Asupan Gizi terhadap Perkembangan Kognitif dan Fisik Anak
Usia Dini,” : Jurnal Gizi dan Kesehatan Indonesia, Vol. 15, No. 2, 2023
Meo, L, Dinatha, N.M, Maku. K.R.M, Meo. G, Rabu. L.A, “Permasalahan Gizi Pada Anak Usia Dini”,
Jurnal Edukasi Citra Olah Raga, Vol.4 No.3, Oktober 2024.
Leviana, S. dan Agustina, Y., “Analisis Pola Makan Dengan Status Gizi Pada Siswa-Siswi Kelas V Di
SDN Jatiwaringin XII Kota Bekasi”, Malahayati Nursing Journal, Vol.6 No.4, Maret 2024
Manaf, S.A.R., Amelia. R., Indahwati, “Faktor-faktor yang memengaruhi Permasalahan Stunting di Jawa
Barat menggunakan Regeresi Logistik Biner”, Jurnal Ilmiah Teori dan Aplikasi Statistika, Vol.15 No.2,
[4]
Tabel Angka Gizi, https://p2ptm.kemkes.go.id/infographic/tabel-angka-kecukupan-gizi-rata-rata-yang-
dianjurkan-per-orang-per-hari-untuk-anak-umur-7-12-tahun
Komposisi Makanan Seimbang, https://www.medicalogy.com/blog/pentingnya-nutrisi-seimbang-untuk-
menjaga-kesehatan-jangka-
panjang/?srsltid=AfmBOopa79lmHdCeZEWF8AfNrWRQwDhVJAmWpPbGbSZGnBA_49EzKMDL
Porsi Makanan Sehat, https://raisingchildren.net.au/school-age/nutrition-fitness/daily-food-
guides/school-age-food-
groups#:~:text=School%2Dage%20children%20need%20to,%2Doxidants%2C%20fibre%20and%20wat
er.
Fahmuddin, M., Aidid, M.K., Taslim, M.J., “Implementasi Analisi Regresisi Logistik dengan Metode
Machine Learning Untuk Mengklasifikasi Berita di Indonesia”, Journal of Statistics and Its Application
on Teaching and Research, Vol. 5 No. 03 (2023)
Rahmadeni dan Puspita, S., “Aplikasi Regresi Logistik Ordinal dalam Pemodelan Status Gizi Balita (Studi
Kasus : Puskesmas Limapuluh di Kota Pekanbaru)”, Jurnal Sains Matematika dan Statistika, Vol.9, No.2,
Juli 2023
Chandra, K. dan Prasetyo, J.S., “Prediksi Penyakit Jantung Koroner Menggunakan Metode K-NN dan
Regresi Logistik berdasarkan Kerangka Kerja CRISP-DM”, Prosiding SENAM 2024 : Sistem Informasi
& Informatika Vo.4, September 2024
Sujana, S., Juwita, A.R., Rahmat, Faisal, S., “Penerapan Metode Regresi Logistik Untuk Memprediksi
Peristiwa Biner Pasien Pasca Operasi Kanker payudara”, Journal of Information System Research (JOSH),
Vol.5, No.4, Juli 2024
Pratama, A., Nurcahyo, A.C, Figria, L., “Penerapan Machine Learning dengan Algoritma Logistik Regresi
untuk Memprediksi Diabetes”, Seminal Nasional CORISINDO, Agustus 2023
N. Nurmalitasari and E. Purwanto, “Prediksi Performa Mahasiswa Menggunakan Model Regresi
Logistik,” J. Deriv. J. Mat. dan Pendidik. Mat., vol. 9, no. 2, pp. 145–152, 2022, doi:
31316/jderivat.v9i2.2639
N. K. K. Ardana et al., “Perbandingan Metode KNN, Naive Bayes, dan Regresi Logistik Binomial dalam
Pengklasifikasian Status Ekonomi Negara,” Jambura J. Math., vol. 5, no. 2, pp. 404–418, 2023, doi:
34312/jjom.v5i2.21103.
Cahyani Q,Finandi M,Rianti J et al.,“Prediksi Risiko Penyakit Diabetes menggunakan Algoritma Regresi
Logistik Diabetes Risk Prediction using Logistic Regression Algorithm ” JOMLAI: Journal of Machine
Learning and Artificial Intelligence, (2022), 2828-9099, 1(2)
A. D. Achmad, “Klasifikasi Breast Cancer Menggunakan Metode Logistic Regression,” Jtriste, vol. 9, no.
, pp. 143-148, 2022, [Online]. Available: https://jurnal.kharisma.ac.id/jtriste/article/download/384/201
Nusinovici, S., Tham, Y. C., Yan, M. Y. C., Ting, D. S. W., Li, J., Sabanayagam, C., Wong, T. Y., &
Cheng, C. (2020). Logistic Regression was as good as machine learning for predicting major chronic
diseases. Journal of Clinical Epidemiology, 122, 56–69. https://doi.org/10.1016/j.jclinepi.2020.03.002
Firmansyah, I., Samudra, J.T, Pardede, D., Situmorang, Z., “Komparasi Random Forest dan Logistic
Regression dalam Klasifikasi Penderita Covid-19 Berdasarkan Gejalanya”, Journal of Science and Social
Research, V (3): 595 – 601, Oct 2022.
Gunawan, S., Astuti, R., Priharto, W., Hamonangan, R., “Prediksi Diabetes Mellitus Tipe 2 Dengan
Algoritma Logistic Regression Untuk Pendeteksi Dini”, JITET (Jurnal Informatika dan Teknik Elektro
Terapan), Vol. 13 No. 1, Januari 2025.
Ayu, K.G, Sari, D.W., “Developing KSAM (Kenyang Bersama) Application Using Extreme Programming
Methodology”, International Journal of Computer Techniques -– Volume 8 Issue 2, April 2021
Kekalih, A., Chandra, D.N., Mirtha, L.T., “Dietary intakes, nutritional and biochemical status of 6 months
to 12-year-old children before the COVID-19 pandemic era: the South East Asian Nutrition Survey II
Indonesia (SEANUTS II) study in Java and Sumatera Islands, Indonesia”, Journal Publich Health Nutrition,
Volume 28, Issue1, 2025.
Maya, S., Kusharto, C. M., Nurdin, N.M., “Kualitas Konsumsi Pangan berdasarkan Healthy Eating Index
dihubungkan dengan Status Gizi Anak Sekolah Dasar Kabupaten Kerinci”, Jurnal Gizi Kerja dan
Produktivitas, Vol.4 No.1, 2023.
Agita, N.M.A.D., Karyus, A., Astuti, D.W., “Hubungan Antara Aktivitas Fisik dan Pola Makan Dengan
Kejadian Obesitas pada Anak Sekolah Dasar SD Negeri 1 Setia Bakti Lampung Tengah Tahun 2024”,
Journal of Education Technologi Information, Social Science and Health, Vol4, No.1, 2025.
DOI: https://doi.org/10.46576/djtechno.v6i2.6925
Article Metrics
Abstract view : 122 timesPDF – 52 times
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Dwi wulandari sari
DJTECHNO: Jurnal Teknologi Informasi Indexed By
Djtechno: Jurnal Teknologi Informasi published by :
PROGRAM STUDI TEKNOLOGI INFORMASI UNIVERSITAS DHARMAWANGSA
Alamat : Jl. K. L. Yos Sudarso No. 224 Medan
Kontak : Tel. 061 6635682 - 6613783Â Fax. 061 6615190
Surat Elektronik : s1.ti@dharmawangsa.ac.id
Djtechno: Jurnal Teknologi Informasi
Ciptaan disebarluaskan di bawah Creative Commons Attribution-ShareAlike 4.0 International License