PENERAPAN METODE NAIVE BAYES UNTUK KLASIFIKASI STATUS GIZI BALITA

Abdul Aziz, Mhd Furqan, M. Fakhriza

Abstract


Stunting is a serious condition that affects the growth and development of children due to malnutrition and repeated infections, which results in delayed physical growth, decreased cognitive abilities, and decreased immunity. The problem of stunting is a top priority in the field of public health in Indonesia. This study aims to design an Android-based application that can monitor the nutritional status of toddlers using the Naive Bayes method, which is known to be effective in classifying data based on probability. Monitoring focuses on preventing stunting through analysis of weight, height, age, and gender parameters. The application developed functions as a tool for health workers and integrated health posts in monitoring the nutritional status of toddlers more efficiently and accurately. By using input data such as date of birth, gender, weight, and height, this application is able to identify the nutritional status of children, whether they are normal, malnourished, or overweight. This system functions in real-time and is built with the Java programming language. The data used in this study are gender, age, height, and weight derived from monitoring the nutritional status of toddlers at the Puskesmas Kecamatan Sinunukan, Kabupaten Mandailing Natal. The data obtained from this study amounted to 100 data points. The evaluation results show that the system is able to classify stunting data based on 3 classes, namely "normal nutrition", "undernutrition", and "overnutrition" with an accuracy of 90%.

References


H. H. Lukmana, M. Al-Husaini, I. Hoeronis, and L. D. Puspareni, “Perancangan Sistem Informasi Deteksi Dini Stunting Berbasis Website Menggunakan Metode User Center Design,” Technol. J. Ilm., vol. 14, no. 3, p. 299, 2023, doi: 10.31602/tji.v14i3.12025.

M. Prihatini, Hermawan, R. Hutomo, Cahyo, and S. Maryana, “Desain Menu Untuk Diet Ibu Hamil Untuk Pencegahan Stunting Menggunakan Algoritma Genetika,” pp. 1–11, 2021.

J. A. Purnomo and A. Rozaq, “Klasifikasi Status Stunting Pada Balita Menggunakan Naive,” vol. 19, no. 2, pp. 69–76, 2022.

U. Nopriansyah, H. Wulandari, and R. Pangestu, “Pengembangan Aplikasi Kesehatan Berbasis Mobile Untuk Pemantauan Deteksi Dini Tumbuh Kembang ( Ddtk ) Anak Usia 4-6 Tahun karakter bangsa ( Udu et al ., 2019 ). Hasil Riset Kesehatan Dasar ( Riskesdas ) 2010 tentang penyebaran status gizi balita pada Prov,” Al Athfaal J. Ilm. Pendidik. Anak Usia Dini, vol. 3, no. 1, pp. 98–111, 2020.

R. BR.Angkat, “Hubungan Kebiasaan Keluarga Dengan Kejadian Stunting Pada Balita Di Wilayah Kerja Puskesmas Manisak Kabupaten Mandailing Natal Tahun 2021,” 2022.

Rokom, “Prevalensi Stunting di Indonesia Turun ke 21,6% dari 24,4% – Sehat Negeriku,” redaksi Sehat Negriku.

D. Sartika and D. Indra, “Perbandingan Algoritma Klasifikasi Naive Bayes, Nearest Neighbour, dan Decision Tree pada Studi Kasus Pengambilan Keputusan Pemilihan Pola Pakaian,” J. Tek. Inform. Dan Sist. Inf., vol. 1, no. 2, pp. 151–161, 2017.

M. Furqan, Y. R. Nasution, and R. Fadillah. “Klasifikasi Penyakit Kulit Menggunakan Algoritma Naïve Bayes Berdasarkan Tekstur Warna Berbasis Android,” J-SAKTI, vol. 6, no. 1, pp. 12–20, 2022.

Y. E. Putra and M. Fahrizal, “Rancang Bangun Menggunakan Metode Naive Bayes Dalam Sistem Pakar Penentuan Penyakit Tanaman Nanas Berbasis Web,” Portaldata.org, vol. 1, 2021.

L. Sitorus, Algoritma dan Pemrograman. Yogyakarta: Andi, 2015.

M. D. Irawan, Flowchart dan Pseudo-Code: Implementasi Notasi Algoritma dan Pemrograman. Media Sains Indonesia, 2022.

Rayuwati, Husna Gemasih, and Irma Nizar, “IMPLEMENTASI AlGORITMA NAIVE BAYES UNTUK MEMPREDIKSI TINGKAT PENYEBARAN COVID,” Jural Ris. Rumpun Ilmu Tek., vol. 1, no. 1, pp. 38–46, 2022, doi: 10.55606/jurritek.v1i1.127.

Y. R. Nasution, Armansyah, M. Furqan, and T. R. Matondang, “Penerapan Algoritma C4.5 Pada Klasifikasi Status Gizi Balita,” JURNAL FASILKOM, vol. 14, no. 1, pp. 216–225, 2024.

S. R. Ningsih, F. Aqfi, F. Husaini, S. Z. Lubis, and M. Furqan, “Diversifikas Olahan Daun Kelor Untuk Menunjang Pendapatan Keluarga Dan Pencegahan Stunting Kecamatan Hinai Kabupaten Langkat,” JPMEBD, vol. 1, no. 3, pp. 3046–8329, 2024.




DOI: https://doi.org/10.46576/syntax.v5i2.5568

Article Metrics

Abstract view : 24 times
PDF (Bahasa Indonesia) – 8 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

INDEXING:

 

Lisensi Creative Commons

Syntax: Journal of Software Engineering, Computer Science and Information Technology

Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi 4.0 Internasional.